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(57) ABSTRACT

A processing device is provided which includes memory and
a processor. The processor is configured to receive an input
image having a first resolution, generate linear down-
sampled versions of the input image by down-sampling the
input image via a linear upscaling network and generate
non-linear down-sampled versions of the input image by
down-sampling the input image via a non-linear upscaling
network. The processor is also configured to convert the
down-sampled versions of the input image into pixels of an
output image having a second resolution higher than the first
resolution and provide the output image for display
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GAMING SUPER RESOLUTION

BACKGROUND

[0001] Super-resolution is the process of upscaling an
original image (e.g. video image, photo), via a neural
network, to extract more information (e.g., details) than the
amount of information present in the original image. Super-
resolution techniques use information from different images
or frames to create an up-scaled image. Details are extracted
from each image in a sequence to reconstruct other images.

BRIEF DESCRIPTION OF THE DRAWINGS

[0002] A more detailed understanding can be had from the
following description, given by way of example in conjunc-
tion with the accompanying drawings wherein:

[0003] FIG. 1 is a block diagram of an example device in
which one or more features of the disclosure can be imple-
mented;

[0004] FIG. 2 is a block diagram of the device of FIG. 1,
illustrating additional detail;

[0005] FIG. 3 is a flow diagram illustrating an example
method of super resolving an image according to features of
the present disclosure;

[0006] FIG. 4 is a flow diagram illustrating a more detailed
example of the method shown in FIG. 3; and

[0007] FIG. 5 is an illustration of using subpixel convo-
Iution to convert a low resolution image to a high resolution
image according to features of the disclosure.

DETAILED DESCRIPTION

[0008] Conventional super-resolution techniques include a
variety of conventional neural network architectures which
perform super-resolution by upscaling images using linear
functions. These linear functions do not, however, utilize the
advantages of other types of information (e.g., non-linear
information), which typically results in blurry and/or cor-
rupted images. In addition, conventional neural network
architectures are generalizable and trained to operate with-
out significant knowledge of an immediate problem. Other
conventional super-resolution techniques use deep learning
approaches. The deep learning techniques do not, however,
incorporate important aspects of the original image, result-
ing in lost color and lost detail information.

[0009] The present application provides devices and meth-
ods for efficiently super-resolving an image, which preserves
the original information of the image while upscaling the
image and improving fidelity. The devices and methods
utilize linear and non-linear up-sampling in a wholly learned
environment.

[0010] The devices and methods include a gaming super
resolution (GSR) network architecture which efficiently
super resolves images in a convolutional and generalizable
manner. The GSR architecture employs image condensation
and a combination of linear and nonlinear operations to
accelerate the process to gaming viable levels. GSR renders
images at a low quality scale to create high quality image
approximations and achieve high framerates. High quality
reference images are approximated by applying a specific
configuration of convolutional layers and activation func-
tions to a low quality reference image. The GSR network
approximates more generalized problems more accurately
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and efficiently than conventional super resolution techniques
by training the weights of the convolutional layers with a
corpus of images.

[0011] A processing device is provided which includes
memory and a processor. The processor is configured to
receive an input image having a first resolution, generate
linear down-sampled versions of the input image by down-
sampling the input image via a linear upscaling network and
generate non-linear down-sampled versions of the input
image by down-sampling the input image via a non-linear
upscaling network. The processor is also configured to
convert the down-sampled versions of the input image into
pixels of an output image having a second resolution higher
than the first resolution and provide the output image for
display.

[0012] A processing device is provided which includes
memory and a processor configured to receive an input
image having a first resolution. The processor is also con-
figured to generate a plurality of non-linear down-sampled
versions of the input image via a non-linear upscaling
network and generate one or more linear down-sampled
versions of the input image via a linear upscaling network.
The processor is also configured to combine the non-linear
down-sampled versions and the one or more linear down-
sampled versions to provide a plurality of combined down-
sampled versions. The processor is also configured to con-
vert the combined down-sampled versions of the input
image into pixels of an output image having a second
resolution higher than the first resolution by assigning, to
each of a plurality of pixel blocks of the output image, a
co-located pixel in each of the combined down-sampled
versions and provide the output image for display.

[0013] A super resolution processing method is provided
which improves processing performance. The method
includes receiving an input image having a first resolution,
generating linear down-sampled versions of the input image
by down-sampling the input image via a linear upscaling
network and generating non-linear down-sampled versions
of the input image by down-sampling the input image via a
non-linear upscaling network. The method also includes
converting the down-sampled versions of the input image
into pixels of an output image having a second resolution
higher than the first resolution and providing the output
image for display.

[0014] FIG. 1is ablock diagram of an example device 100
in which one or more features of the disclosure can be
implemented. The device 100 can include, for example, a
computer, a gaming device, a handheld device, a set-top box,
a television, a mobile phone, or a tablet computer. The
device 100 includes a processor 102, a memory 104, storage
106, one or more input devices 108, and one or more output
devices 110. The device 100 can also optionally include an
input driver 112 and an output driver 114. It is understood
that the device 100 can include additional components not
shown in FIG. 1.

[0015] In various alternatives, the processor 102 includes
one or more processors, such as a central processing unit
(CPU), a graphics processing unit (GPU), or another type of
compute accelerator, a CPU and GPU located on the same
die, or one or more processor cores, wherein each processor
core can be a CPU or a GPU or another type of accelerator.
Multiple processors are, for example, included on a single
board or multiple boards. Processor on one or more boards.
In various alternatives, the memory 104 is be located on the
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same die as the processor 102, or is located separately from
the processor 102. The memory 104 includes a volatile or
non-volatile memory, for example, random access memory
(RAM), dynamic RAM, or a cache.

[0016] The storage 106 includes a fixed or removable
storage, for example, a hard disk drive, a solid state drive, an
optical disk, or a flash drive. The input devices 108 include,
without limitation, one or more image capture devices (e.g.,
cameras), a keyboard, a keypad, a touch screen, a touch pad,
a detector, a microphone, an accelerometer, a gyroscope, a
biometric scanner, or a network connection (e.g., a wireless
local area network card for transmission and/or reception of
wireless IEEE 802 signals). The output devices 110 include,
without limitation, one or more serial digital interface (SDI)
cards, a display, a speaker, a printer, a haptic feedback
device, one or more lights, an antenna, or a network con-
nection (e.g., a wireless local area network card for trans-
mission and/or reception of wireless IEEE 802 signals).
[0017] The input driver 112 communicates with the pro-
cessor 102 and the input devices 108, and permits the
processor 102 to receive input from the input devices 108.
The output driver 114 communicates with the processor 102
and the output devices 110, and permits the processor 102 to
send output to the output devices 110. The input driver 112
and the output driver 114 include, for example, one or more
video capture devices, such as a video capture card (e.g., an
SDI card). As shown in FIG. 1, the input driver 112 and the
output driver 114 are separate driver devices. Alternatively,
the input driver 112 and the output driver 114 are integrated
as a single device (e.g., an SDI card), which receives
captured image data and provides processed image data
(e.g., panoramic stitched image data) that is stored (e.g., in
storage 106), displayed (e.g., via display device 118) or
transmitted (e.g., via a wireless network).

[0018] It is noted that the input driver 112 and the output
driver 114 are optional components, and that the device 100
will operate in the same manner if the input driver 112 and
the output driver 114 are not present. In an example, as
shown in FIG. 1, the output driver 114 includes an acceler-
ated processing device (“APD”) 116 which is coupled to the
display device 118. The APD is configured to accept com-
pute commands and graphics rendering commands from
processor 102, to process those compute and graphics ren-
dering commands, and to provide pixel output to display
device 118 for display. The APD 116 includes, for example,
one or more parallel processing units configured to perform
computations in accordance with a single-instruction-mul-
tiple-data (“SIMD”) paradigm. Thus, although various func-
tionality is described herein as being performed by or in
conjunction with the APD 116, in various alternatives, the
functionality described as being performed by the APD 116
is additionally or alternatively performed by other comput-
ing devices having similar capabilities that are not driven by
a host processor (e.g., processor 102) and configured to
provide graphical output to a display device 118. For
example, it is contemplated that any processing system that
performs processing tasks in accordance with a SIMD
paradigm may be configured to perform the functionality
described herein. Alternatively, it is contemplated that com-
puting systems that do not perform processing tasks in
accordance with a SIMD paradigm performs the function-
ality described herein.

[0019] FIG. 2 is a block diagram of the device 100,
illustrating additional details related to execution of pro-
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cessing tasks on the APD 116. The processor 102 maintains,
in system memory 104, one or more control logic modules
for execution by the processor 102. The control logic
modules include an operating system 120, a kernel mode
driver 122, and applications 126. These control logic mod-
ules control various features of the operation of the proces-
sor 102 and the APD 116. For example, the operating system
120 directly communicates with hardware and provides an
interface to the hardware for other software executing on the
processor 102. The kernel mode driver 122 controls opera-
tion of the APD 116 by, for example, providing an applica-
tion programming interface (“API”) to software (e.g., appli-
cations 126) executing on the processor 102 to access
various functionality of the APD 116. The kernel mode
driver 122 also includes a just-in-time compiler that com-
piles programs for execution by processing components
(such as the SIMD units 138 discussed in further detail
below) of the APD 116.

[0020] The APD 116 executes commands and programs
for selected functions, such as graphics operations and
non-graphics operations that may be suited for parallel
processing. The APD 116 can be used for executing graphics
pipeline operations such as pixel operations, geometric
computations, and rendering an image to display device 118
based on commands received from the processor 102. The
APD 116 also executes compute processing operations that
are not directly related to graphics operations, such as
operations related to video, physics simulations, computa-
tional fluid dynamics, or other tasks, based on commands
received from the processor 102.

[0021] The APD 116 includes compute units 132 that
include one or more SIMD units 138 that are configured to
perform operations at the request of the processor 102 in a
parallel manner according to a SIMD paradigm. The SIMD
paradigm is one in which multiple processing elements share
a single program control flow unit and program counter and
thus execute the same program but are able to execute that
program with different data. In one example, each SIMD
unit 138 includes sixteen lanes, where each lane executes the
same instruction at the same time as the other lanes in the
SIMD unit 138 but can execute that instruction with different
data. Lanes can be switched off with predication if not all
lanes need to execute a given instruction. Predication can
also be used to execute programs with divergent control
flow. More specifically, for programs with conditional
branches or other instructions where control flow is based on
calculations performed by an individual lane, predication of
lanes corresponding to control flow paths not currently being
executed, and serial execution of different control flow paths
allows for arbitrary control flow.

[0022] The basic unit of execution in compute units 132 is
a work-item. Each work-item represents a single instantia-
tion of a program that is to be executed in parallel in a
particular lane. Work-items can be executed simultaneously
as a “wavefront” on a single SIMD processing unit 138. One
or more wavefronts are included in a “work group,” which
includes a collection of work-items designated to execute
the same program. A work group can be executed by
executing each of the wavefronts that make up the work
group. In alternatives, the wavefronts are executed sequen-
tially on a single SIMD unit 138 or partially or fully in
parallel on different SIMD units 138. Wavefronts can be
thought of as the largest collection of work-items that can be
executed simultaneously on a single SIMD unit 138. Thus,
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if commands received from the processor 102 indicate that
a particular program is to be parallelized to such a degree
that the program cannot execute on a single SIMD unit 138
simultaneously, then that program is broken up into wave-
fronts which are parallelized on two or more SIMD units 138
or serialized on the same SIMD unit 138 (or both paral-
lelized and serialized as needed). A scheduler 136 is con-
figured to perform operations related to scheduling various
wavefronts on different compute units 132 and SIMD units
138.

[0023] The parallelism afforded by the compute units 132
is suitable for graphics related operations such as pixel value
calculations, vertex transformations, and other graphics
operations. Thus in some instances, a graphics pipeline 134,
which accepts graphics processing commands from the
processor 102, provides computation tasks to the compute
units 132 for execution in parallel.

[0024] The compute units 132 are also used to perform
computation tasks not related to graphics or not performed
as part of the “normal” operation of a graphics pipeline 134
(e.g., custom operations performed to supplement process-
ing performed for operation of the graphics pipeline 134).
An application 126 or other software executing on the
processor 102 transmits programs that define such compu-
tation tasks to the APD 116 for execution.

[0025] An example method of super resolving an image is
now described with reference to FIGS. 3 and 4. FIG. 3 is a
flow diagram illustrating an example method of super
resolving an image. FIG. 4 is a flow diagram illustrating a
more detailed example of the method shown in FIG. 3.
[0026] As shown in block 302, the method includes
receiving a low resolution image. Prior to receiving the low
resolution image at block 302, an original image is, for
example, preprocessed using any one of a plurality of
conventional normalization techniques, to condense the
original image to the low resolution normalized image (i.e.,
the low resolution image) received at block 302. For
example, as shown in block 402 of FIG. 4, an original image
(e.g., 1x3x2560x1440 resolution image) is received and
preprocessed (e.g., normalized) according to preprocessing
operations 404 (e.g., including division and subtraction
operations) to condense the original image to the low
resolution normalized image received at block 302.

[0027] The low resolution image is then processed accord-
ing to two different processes, as shown at blocks 304 and
306. The low resolution image is processed according to a
deep-learning based linear upscaling network shown at
block 304 and according to a deep-learning based non-linear
upscaling network shown at block 306. In the example
shown at FIG. 3, the processing shown at blocks 304 and
306, each of which operates on the low resolution image, are
performed in parallel. Alternatively, when hardware does not
support the processing in parallel, the linear upscaling
processing and the non-linear upscaling processing are not
performed in parallel.

[0028] The deep-learning based linear upscaling network
includes a linear convolutional filter that down-samples the
image (e.g., by % the resolution of the image) and extracts
linear features from the image to convert from an image
having a small number (e.g., 3) of feature channels (e.g.,
red-green-blue (RGB) channels) to a down-sampled image
having a larger number (e.g., 27) of linear feature channels.
That is, the low resolution image is processed to create a
large number (e.g., 27) of linearly down-sampled versions of
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the low resolution image. The deep-learning based non-
linear upscaling network processes the low resolution
image, via a series of convolutional operators and activation
functions, extracts non-linear features, down-samples the
features and increases the amount of feature information of
the low resolution image.

[0029] The combination of the linear and non-linear
upscaling facilitates both the preservation of color and larger
scale features (large objects and shapes that are more easily
perceived by the human eye) of the image from linear
upscaling as well as the preservation of finer features (e.g.,
curved features and features that are not easily perceived in
low resolution) of the image from non-linear upscaling.
Linear operations use only input data, while non-linear
operations use both input data and other data (i.e., non-input
data) to augment the input data. Non-linear functions facili-
tate accurately determining complex features (e.g., curves)
of'an image more efficiently than non-linear functions (e.g.,
convolution operations).

[0030] For example, the left path in FIG. 4 illustrates an
example of linear upscaling processing 304 and the right
path in FIG. 4 illustrates an example of non-linear upscaling
processing 306. Each convolution operation 406 (i.e., each
convolution layer) shown in the left and right paths in FIG.
4 performs a matrix mathematics operation (e.g., matrix
multiply) on a window of pixel data of the low resolution
image, which produces one or more down-sampled versions
(i.e., one or more feature maps) of the image having multiple
features but at a lower resolution. For example, each con-
volution operation 406 is predetermined (e.g., set prior to the
runtime of super resolving images of a video stream) to
produce the same number (i.e., one or more) of down-
sampled versions each time (e.g., each image of the video
stream) the convolution operation 406 is performed.
[0031] In the example shown in FIG. 4, the left path (i.e.,
linear upscaling processing 304) includes a single convolu-
tion operation 406 and the right path includes a plurality of
linear convolution operations 406. The right path also
includes a plurality of non-linear point wise activation
functions 408 stacked between the convolutional operations
406. The number of convolution operations 406 and activa-
tion functions 408 shown in FIG. 4 is merely an example.
Examples can include any number of convolutional opera-
tions and activation functions. In addition, the dimensions
(e.g., 1x3x2560x1440, 48x3x5x5, 48x48x3x3 and 1x3x
1520x2880) shown in FIG. 4 are merely examples.

[0032] Each activation function 408 is a non-linear math-
ematics function which receives element data and trans-
forms the data into non-linear data. That is, after each
convolution operation 406 is performed on input data on the
right path, a non-linear point wise activation function 408 is
applied to convert linear data into non-linear data. By
stacking the activation functions 408 between the convolu-
tional operations 406, a series of linear operations is con-
verted into a series of non-linear operations. As the neural
network learns to process the data, the network is con-
strained (i.e., limited) less by the data of the original image
than if the stacking of the activation functions between the
convolutional operations 406 was not performed, resulting
in the input data being warped more effectively to super
resolve the image.

[0033] Referring back to FIG. 3, the linearly down-
sampled (e.g., V2 resolution) versions of the low resolution
image 302 and the non-linear down-sampled versions of the
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low resolution image 302 are combined, as shown at block
308 (and in FIG. 4), to provide a combined number of
down-sampled versions of the low resolution image 302.
These down-sampled versions of the low resolution image
302 extract a large number of features (i.e., feature channels)
from the image at a low resolution.

[0034] As shown at block 310, the method also includes a
pixel shuffle process 310. For example, the pixel shuffle
process 310 includes performing operations, such as reshape
operations 410 and transpose operations 412 shown in FIG.
4, to provide the high resolution image 312, as described in
more detail below.

[0035] FIG. 5 is a diagram illustrating the use of subpixel
(i.e., sub-resolution pixels) convolution to convert a low
resolution image to a high resolution image according to
features of the disclosure. The first three parts of FIG. §
(annotated as hidden layers) illustrate the extraction of
features from the low resolution image 502 to generate a
plurality of down-sampled versions 504 of the low resolu-
tion image 502 according to one of the processing paths (i.e.,
linear upscaling processing 304 or the non-linear upscaling
processing 306) shown in FIG. 3. The down-sampled ver-
sions 504 of the low resolution image 302, which extract a
large number of features form the image 302 are also
referred to herein as feature maps 504 and combined feature
maps 506.

[0036] In the example shown in FIG. 4, the linear upscal-
ing processing 304 at the left path includes a single convo-
Iution operation 406 (i.e., a single hidden layer), performed
on a window of pixel data of the low resolution image 502
having a small number (e.g., 3) of features (e.g., RGB color
features), which produces a linear down-sampled version
(i.e., a feature map 504) of the image 502 having a larger
number (e.g., 48) of features, including color features,
non-color features and features which have color informa-
tion and non-color information.

[0037] The non-linear upscaling processing 306 at the
right path in FIG. 4 includes 3 pairs of convolution opera-
tions 406 (i.e., 3 hidden layers), and an activation function
408. That is, a first convolution operation 406 is performed
on a window of pixel data of the image 502 followed by an
activation function 408 (e.g., “Tan h” function), which
produces a first non-linear version (i.e., a feature map 504)
of the image 502. Next, a second convolution operation 406
is performed on a window of pixel data of the image 502
followed by a second activation function 408, which pro-
duces a second non-linear version (i.e., a feature map 504)
of the image 502. Then, a third convolution operation 406 is
performed on a window of pixel data of the image 502
followed by a third activation function 408, which produces
a third non-linear version (i.e., a feature map 504) of the
image 502.

[0038] The fourth and fifth parts of FIG. 5 (annotated as
sub-pixel convolution layer) illustrate the generating of the
high resolution image 508 from the combined number of
down-sampled versions 506 of the low resolution image 502
resulting from the linear upscaling processing 304 and the
non-linear upscaling processing 306.

[0039] The pixels shuffle process 310 includes converting
the low resolution feature maps 506 into pixels of the high
resolution image 508 by generating each of the blocks 510
at the higher resolution using the low resolution pixel
information. As shown in the example at FIG. 5, the high
resolution image 508 includes a plurality of 3x3 high
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resolution pixel blocks 510 each having a repeating pattern
of nine pixels. In addition, nine down-sampled versions
506(1)-506(9) of the low resolution image 302 are generated
to correspond to the nine pixels high resolution pixel blocks
510, in which eight of the down-sampled versions 506
represent a shifted low resolution version of the image 302
and one of the down-sampled versions 506 represents a
non-shifted low resolution version of the image 302.

[0040] For example, down-sampled version 506(1) repre-
sents a low resolution version of the image 302 shifted up
(i.e., up in the Y direction) by 1 pixel position and to the left
(i.e., left in the X direction) by 1 pixel position. Down-
sampled version 506(2) represents a low resolution version
of the image 302 shifted up (i.e., up in the Y direction) by
1 pixel position. Down-sampled version 506(3) represents a
low resolution version of the image 302 shifted up (i.e., up
in the Y direction) by 1 pixel position and to the right (i.e.,
right in the X direction) by 1 pixel position. Down-sampled
version 506(4) represents a low resolution version of the
image 302 shifted to the left (i.e., left in the X direction) by
1 pixel position. Down-sampled version 506(5) represents a
non-shifted low resolution version of the image 302. Down-
sampled version 506(6) represents a low resolution version
of the image 302 shifted to the right (i.e., right in the X
direction) by 1 pixel position. Down-sampled version 506(7)
represents a low resolution version of the image 302 shifted
down (i.e., down in the Y direction) by 1 pixel position and
to the left (i.e., left in the X direction) by 1 pixel position.
Down-sampled version 506(8) represents a low resolution
version of the image 302 shifted down (i.e., down in the Y
direction) by 1 pixel position. Down-sampled version 506(9)
represents a low resolution version of the image 302 shifted
down (i.e., down in the Y direction) by 1 pixel position and
to the right (i.e., right in the X direction) by 1 pixel position.

[0041] The pixel shuffle process 310 is implemented by
assigning, to each of the high resolution pixel blocks 510, a
co-located pixel in each of the nine low resolution feature
maps 506. For example, the first high resolution pixel block
510, located at the top left corner of the high resolution
image 508, is generated by: assigning, to pixel position 1 of
the high resolution pixel block 510, the pixel at the top left
corner (i.e., co-located pixel) of the first low resolution
feature map 506(1); assigning, to pixel position 2 of the high
resolution pixel block 510, the pixel located at the top left
corner of the second low resolution feature map 506(2);
assigning, to pixel position 3 of the high resolution pixel
block 510, the pixel located at the top left corner of the third
low resolution feature map 506(3); assigning, to pixel posi-
tion 4 of the high resolution pixel block 510, the pixel
located at the top left corner of the fourth low resolution
feature map 506(4); assigning, to pixel position 5 of the high
resolution pixel block 510, the pixel located at the top left
corner of the fifth low resolution feature map 506(5);
assigning, to pixel position 6 of the high resolution pixel
block 510, the pixel located at the top left corner of the sixth
low resolution feature map 506(6); assigning, to pixel posi-
tion 7 of the high resolution pixel block 510, the pixel
located at the top left corner of the seventh low resolution
feature map 506(7); assigning, to pixel position 8 of the high
resolution pixel block 510, the pixel located at the top left
corner of the eighth low resolution feature map 506(8); and
assigning, to pixel position 9 of the high resolution pixel
block 510, the pixel located at the top left corner of the ninth
low resolution feature map 506(9).
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[0042] The next high resolution pixel block 510 (i.e.,
block to the right of the first high resolution pixel block 510)
is generated in a similar manner to the first high resolution
pixel block 510 by assigning, to each pixel position 1-9 of
the high resolution pixel block 510, the co-located pixels
(i.e., pixels located to the right of the pixels at the top left
corner) in each respective low resolution feature map 506
(1)-106(9). The process continues for each of the remaining
high resolution pixel blocks 510 of the high resolution image
508.

[0043] After the pixel shuffle process 310 is performed
and prior to generating the high resolution image 312,
additional processing operations 414, which include addi-
tion and multiplication operations are performed to undo the
normalization of the original image 402, performed by the
subtraction and division operations 404, and return the
original image 402 back to a standard color space.

[0044] It should be understood that many variations are
possible based on the disclosure herein. Although features
and elements are described above in particular combina-
tions, each feature or element can be used alone without the
other features and elements or in various combinations with
or without other features and elements.

[0045] The various functional units illustrated in the fig-
ures and/or described herein (including, but not limited to,
the processor 102, the input driver 112, the input devices
108, the output driver 114, the output devices 110, the
accelerated processing device 116, the scheduler 136, the
graphics processing pipeline 134, the compute units 132 and
the SIMD units 138 may be implemented as a general
purpose computer, a processor, Or a Processor core, or as a
program, software, or firmware, stored in a non-transitory
computer readable medium or in another medium, execut-
able by a general purpose computer, a processor, or a
processor core. The methods provided can be implemented
in a general purpose computer, a processor, Or a processor
core. Suitable processors include, by way of example, a
general purpose processor, a special purpose processor, a
conventional processor, a digital signal processor (DSP), a
plurality of microprocessors, one or more microprocessors
in association with a DSP core, a controller, a microcon-
troller, Application Specific Integrated Circuits (ASICs),
Field Programmable Gate Arrays (FPGAs) circuits, any
other type of integrated circuit (IC), and/or a state machine.
Such processors can be manufactured by configuring a
manufacturing process using the results of processed hard-
ware description language (HDL) instructions and other
intermediary data including netlists (such instructions
capable of being stored on a computer readable media). The
results of such processing can be maskworks that are then
used in a semiconductor manufacturing process to manu-
facture a processor which implements features of the dis-
closure.

[0046] The methods or flow charts provided herein can be
implemented in a computer program, software, or firmware
incorporated in a non-transitory computer-readable storage
medium for execution by a general purpose computer or a
processor. Examples of non-transitory computer-readable
storage mediums include a read only memory (ROM), a
random access memory (RAM), a register, cache memory,
semiconductor memory devices, magnetic media such as
internal hard disks and removable disks, magneto-optical
media, and optical media such as CD-ROM disks, and
digital versatile disks (DVDs).
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What is claimed is:

1. A processing device comprising:

memory; and

a processor configured to:

receive an input image having a first resolution;

generate linear down-sampled versions of the input image

by down-sampling the input image via a linear upscal-
ing network;

generate non-linear down-sampled versions of the input

image by down-sampling the input image via a non-
linear upscaling network;

convert the down-sampled versions of the input image

into pixels of an output image having a second reso-
Iution higher than the first resolution; and

provide the output image for display.

2. The processing device of claim 1, wherein the proces-
sor is configured to generate the non-linear down-sampled
versions of the input image, via the non-linear upscaling
network, by stacking an activation function between each of
a plurality of convolutional operations to convert a series of
linear operations into a series of non-linear operations.

3. The processing device of claim 1, wherein the proces-
sor is configured to generate the linear down-sampled ver-
sions of the input image, via the linear upscaling network, by
performing one or more convolution operations on a win-
dow of pixels of the input image.

4. The processing device of claim 1, wherein the proces-
sor is configured to convert the down-sampled versions of
the input image into pixels by generating, for the output
image, a plurality of pixel blocks, each pixel block com-
prising a co-located pixel from each of the down-sampled
versions of the input image.

5. The processing device of claim 4, wherein each pixel
block of the output image comprises a plurality of pixels,
each located at one of a number of different positions of each
pixel block, and

each position comprises the co-located pixel from a

corresponding down-sampled versions of the input
image.

6. The processing device of claim 5, wherein a total
number of the different positions of each pixel block is equal
to a total number of the down-sampled versions of the input
image.

7. The processing device of claim 1, wherein the linear
upscaling network comprises one or more convolution
operations, the non-linear upscaling network comprises a
plurality of convolution operations, each convolution opera-
tion produces a same number of linear down-sampled ver-
sions or a same number of non-linear down-sampled ver-
sions each time a corresponding convolution operation is
performed.

8. A processing device comprising:

memory; and

a processor configured to:

receive an input image having a first resolution;

generate a plurality of non-linear down-sampled versions

of the input image via a non-linear upscaling network;
generate a plurality of linear down-sampled versions of
the input image via a linear upscaling network;
combine the plurality of non-linear down-sampled ver-
sions and the plurality of linear down-sampled versions
to provide a plurality of combined down-sampled ver-
sions;
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convert the combined down-sampled versions of the input
image into pixels of an output image having a second
resolution higher than the first resolution by assigning,
to each of a plurality of pixel blocks of the output
image, a co-located pixel in each of the combined
down-sampled versions; and

provide the output image for display.

9. The processing device of claim 8, wherein each of the
plurality of non-linear down-sampled versions comprises at
least one of color features, non-color features and features
which have color information and non-color information.

10. The processing device of claim 8, wherein the pro-
cessor is configured to generate the plurality of non-linear
down-sampled versions of the input image in parallel with
the plurality of linear down-sampled versions of the input
image.

11. The processing device of claim 8, wherein the pro-
cessor is configured to generate the plurality of non-linear
down-sampled versions by stacking activation functions
between convolutional operations to convert a series of
linear operations into a series of non-linear operations.

12. The processing device of claim 8, wherein the pro-
cessor is configured to generate the plurality of linear
down-sampled versions of the input image, via the linear
upscaling network, by performing at least one convolution
operation on a window of pixels of the input image.

13. The processing device of claim 8, wherein each pixel
block of the output image comprises a plurality of pixels,
each located at one of a number of different positions of each
pixel block, and

each position comprises the co-located pixel from a

corresponding down-sampled versions of the input
image.

14. The processing device of claim 13, wherein a total
number of the different positions of each pixel block is equal
to a total number of the down-sampled versions of the input
image.

15. The processing device of claim 8, wherein the linear
upscaling network comprises one or more convolution
operations, the non-linear upscaling network comprises a
plurality of convolution operations, each convolution opera-
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tion produces a same number of linear down-sampled ver-
sions or a same number of non-linear down-sampled ver-
sions each time a corresponding convolution operation is
performed.

16. A super resolution processing method comprising:

receiving an input image having a first resolution;

generating linear down-sampled versions of the input
image by down-sampling the input image via a linear
upscaling network;

generating non-linear down-sampled versions of the input

image by down-sampling the input image via a non-
linear upscaling network;

converting the linear down-sampled versions of the input

image and the non-linear down-sampled versions of the

input image into pixels of an output image having a

second resolution higher than the first resolution; and
providing the output image for display.

17. The method of claim 16, wherein generating the
down-sampled versions of the input image, via the non-
linear upscaling network, comprises stacking an activation
function between each of a plurality of convolutional opera-
tions to convert a series of linear operations into a series of
non-linear operations.

18. The method of claim 16, wherein generating the
down-sampled version of the input image, via the linear
upscaling network, comprises performing a convolution
operation on a window of pixels of the input image.

19. The method of claim 16, wherein converting the
down-sampled versions of the input image into pixels com-
prises generating, for the output image, a plurality of pixel
blocks, each pixel block comprising a co-located pixel from
each of the down-sampled versions of the input image.

20. The method of claim 16, wherein the linear upscaling
network comprises one or more convolution operations, the
non-linear upscaling network comprises a plurality of con-
volution operations, each convolution operation produces a
same number of linear down-sampled versions or a same
number of non-linear down-sampled versions each time a
corresponding convolution operation is performed.
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